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Abstract— With the rise of microservices, the execution
environment of many cloud applications has become a set of
virtual machines or containers, connected by a flexible and
feature rich virtual network. We argue that the implemen-
tation of such virtual networks should be completely appli-
cation specific, and not layered on top of general-purpose
network abstractions from the Internet age. We propose
application-defined networks, in which developers specify
network functionality in a high-level language and a con-
troller generates a custom distributed implementation that
runs across available hardware and software resources.

1 Introduction

Since the dawn of the Internet, the design and implementa-
tion of data networks has valued generality—the ability to
support a wide range of applications—and has used a modu-
lar organization to meet this goal in a practical manner. The
Internet architecture is organized as a layered stack of pro-
tocols. Each protocol offers a specific functionality, building
atop one or more lower-layer protocols.

Generality and modularity, however, impose bandwidth,
compute, and latency overhead [26]. Application messages
may be wrapped first in HTTP, then in TCP, and then IP,
and are processed in sequence by multiple protocols at the
sender and the receiver. Even so, the general network often
cannot support all the requirements of a given application.
The result is that it does too much for some applications
(at a high cost) and too little for others [2, 3, 29, 38, 58]. For
instance, many distributed applications need load balancing
across replicas, something that the Internet does not provide.

High overhead and imperfect application support maybe
inevitable for a general network, but many networks to-
day are built to support a single application. The key dri-
ver for such application networks are microservices [28],
where application logic is split across many (sometimes thou-
sands [49, 65]) services. Communication between microser-
vices has rich requirements, such as load balancing, rate limit-
ing, authentication, access control, and telemetry. Engineers
use service meshes such as Istio [20] and Linkerd [21] to build
networks that meet these requirements. These networks are
virtually isolated and have specific ingress and egress points

to communicate externally. Application networks are wide-
spread, in use or development at 90% of organizations that
develop cloud applications [15].

The tragedy of today’s application networks is that, even
though they serve a single application, they are built using
the same abstractions that were designed for general-purpose
communication. Service meshes assume that applications
emit IP packets that contain other standard protocols (e.g.,
TCP, HTTP, and gRPC). A local proxy intercepts these pack-
ets and, in the manner of middleboxes, parses and unwraps
the network packets. It then applies the network policies and
wraps the packets again before sending them to the receiver.
The receiver has a local proxy as well, which also unwraps
the packet, processes it, and wraps it again before handing
it off to the application.

This architecture, which allows service meshes to support
a range of applications, has significant downsides. Depend-
ing on service mesh configuration, it can increase message
processing latency by up to 2.7-7.1x and CPU usage by up to
1.6-7x [4, 12, 14, 54, 67]. Further, layering hides or obscures
information, which makes it hard to implement network poli-
cies that are highly application specific (e.g., choosing repli-
cas based on information in the application’s RPC) [5, 16]. Fi-
nally, being general, service mesh implementations are large
and complex, so it is almost impossible to accelerate them
via programmable kernel, NICs, and switches [27, 51, 52, 60].

Based on these observations, we argue for application
networks to be highly customized to the application and its
deployment environment. This perspective is the natural
endgame for the lines of work that adapt standard protocols
to better meet the application needs [1, 10] and do cross-layer
optimizations to lower the overhead of generality [32, 41, 47].

The key design challenge is: can we enable custom appli-
cation networks without excessive burden on each applica-
tion’s developers to implement their own network function-
ality? We propose to address this challenge via Application
Defined Networks. ADNs run atop an underlay network that
only provides basic layer-2 connectivity, similar to that pro-
vided by cloud virtual networks. Anything else that the ap-
plication needs is expressed in a high-level, domain-specific
language. We orient the specification language around pro-
cessing RPC messages emitted by the application because
that processing is most relevant [37, 64]. A compiler takes
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this specification and generates an efficient, distributed im-
plementation across available hardware and software re-
sources, and a runtime controller dynamically reconfigures
the network based on workload and failures.

Decoupling the specification of the network functionality
from its implementation allows us to generate implementa-
tions customized for the application and avoid the fundamen-
tal trade-off between doing too little or too much that any
general-purpose implementation must make [58]. Further,
because we know the semantics of network processing, we
can apply optimizations such as selectively offloading net-
work functions to hardware and parallelizing or reordering
them while preserving semantics. It also allows us to scale
network processing up without disruption, as the number of
microservice instances changes or the workload scales.

2 The curse of generality

We highlight the pitfalls of building application networks
with general abstractions using an example. We view ap-
plications as sources and sinks of RPC messages and the
"network” as everything that happens to RPCs between ap-
plication send and receive. Consider an application with two
microservices, A and B. Service B is sharded and its two
instances, B.1 and B.2, hold a subset of the object identifier
space. The application developer wants the network to 1)
load balance RPC requests from A to B.1 or B.2 based on the
object identifier in the request, 2) compress and decompress
the RPC payload, and 3) perform access control based on
user and object identifiers in the RPC request.

One could implement these network policies along with
the application code itself but that is not practical. Network
policies often evolve independently from the application
logic (e.g., we may introduce a third replica for B), and it is not
practical to modify the application source and re-deploy each
time they change. Further, for trust issues, some network
policies (i.e., access control) must be enforced outside the
application. Thus, the developer needs to implement the
network outside of the application, even though it is meant
to serve only this application.

Preferring generality, the application developer today does
not use a custom request processor that could inspect and
manipulate the message to achieve the desired policy. In-
stead, they lean on a standardized protocol, say HTTP, that
allows arbitrary information to be embedded in its headers,
and modifies the application to add headers for object and
user identifiers. Because they choose HTTP, TCP and IP are
also chosen as additional layers into which application in-
formation is wrapped. The application may or may not have
cared about these layers originally.

Then, the developer selects a module that can enforce their
policies; this functionality is common in L7 proxies [7, 9, 13].
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Figure 1: Packet processing in service meshes.
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Finally, they need a mechanism such that application’s traf-
fic reaches this module when sent to B. This can be accom-
plished by intercepting and rewriting the IP packets (e.g.,
using iptables) generated by the application or using DNS
to resolve B.1 and B.2 to the address of the module. Once
the routing module gets the packet, it parses it to extract the
HTTP header and sends it along to the right version of B.

The resulting packet path and processing are shown in
Figure 1. The application RPC library serializes the request
message, and the kernel network stack (configured by iptable
rules) forwards the message to the proxy, which typically
needs to parse the message headers and deserialize the pay-
load to enforce the desired policy. The proxy then re-encodes
the headers and re-serializes the message for transport.

Service meshes [20, 21] today follow this architectural
paradigm. The proxies are called sidecars, and they run as a
separate user-space process (or container), intercepting and
manipulating all incoming and outgoing packets. The key
advantage of this approach is that it can support a range of
applications, but its downsides are significant.

High overhead. Packets travel up and down the stack, and
they are encoded and decoded multiple times. This has high
overhead in terms of application latency and server CPU.
SPRIGHT shows that service meshes can reduce through-
put, increase latency, and increase CPU utilization by 3-
7x [54]. This overhead is on top of the already-expensive
communication cost in microservices even without service
meshes [43, 53]. The overhead of service meshes stems from
parsing all the protocol headers to recover wrapped informa-
tion [67]. They also sometimes implement functionality that
overlaps with that of lower layers (e.g., retries, rate limiting)
because the application desires different semantics [24].

Non-portability. With service meshes, developers imple-
ment desired network behaviors by choosing and chaining
specific software plugins such as load balancers and loggers.
Such network functions can only run within the context of
the sidecar and use vanilla IP for transport. This limitation
runs up against the increasingly programmable nature of the
OS kernel (via eBPF), and the availability of programmable
networking hardware (NICs and switches). Parsing and pro-
cessing for many standardized protocols are almost impos-
sible to offload to kernel [51, 62] or hardware [27, 52, 60].



As just one difficulty, using programmable networking hard-
ware often requires custom header designs due to hardware
constraints [42, 46]. A P4-based programmable switch has ac-
cess to about the first 200 bytes of each network packet [63].
To offload load balancing, we must put the field the load
balancer needs into the first 200 bytes of the packet, which
may not happen with multiple layers of header wrapping.

Poor extensibility. High overhead and non-portability of
service meshes would be more tolerable if they were highly
extensible, but that is not the case. Network policies that are
hard to express using standard protocols are hard to build
and deploy. Consider a request routing policy that sends RPC
requests of type T2 to a specific service instance, but only
when it follows an RPC of type T1. For such custom func-
tionality, service meshes offer a plugin framework. However,
low-level abstractions used for such plugins (IP or HTTP
packet, not RPCs) make them hard to develop [5, 16] and the
isolation mechanisms for safely running these plugins (e.g.,
Web Assembly) further drive up the overhead [67].

3 Application defined networks

Given the pitfalls of building application networks using
general-purpose abstractions, we advocate building them
in a way that is highly customized to the application and
its environment. The network and the software stack under
the application should offer no protocols or abstractions
by default except for a (virtual) link layer that can deliver
packets to endpoints based on a flat identifier such as a
MAC address. Cloud virtual networks (e.g., AWS VPCs [19])
provide this abstraction, and technologies like VXLAN [18]
can implement it anywhere.

Everything the network does beyond layer 2 is specified
by the application developer in a domain-specific language
(DSL). This specification includes a chain of elements, each
is an operation on an RPC message between two services.
A controller decides how to realize the specification in the
deployment environment of the application. Depending on
available resources, RPC processing may happen in the RPC
library (e.g., gRPC), in-kernel (e.g., using eBPF), in a separate
process as today, or on a programmable hardware device, or
amix of locations. The controller may also decides to execute
multiple elements in parallel or re-order them for efficiency.

Figure 2 shows how a controller may realize the desired
RPC processing described in §2 in different deployment envi-
ronments. Configuration 1 shows the case where it deploys
the load balancer and compression as part of the RPC li-
brary (akin to gRPC proxyless [8]). Configuration 2 moves
these functions to the OS kernel on the sender side and to a
SmartNIC on the receiver side. Configuration 3 moves load
balancing and access control to a programmable switch and
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Figure 2: Possible realizations of a RPC processing
chain (described in §2).

also reorders the processing after automatically determin-
ing that reordering preserves semantics. In this example,
not compressing the RPC field that the following load bal-
ancer uses is enough to preserve semantics. Configuration 4
replicates RPC processing to increase throughput.

The exact choice of configuration depends on (1) resources
available in the deployment environment, (2) the security
model (e.g., mandatory RPC policies should not be enforced
inside the same application binary), and (3) the current work-
load. Our main observation is that once we have a high-level
specification of desired network behavior, we can automati-
cally generate a highly-efficient implementation. How the
RPC message is packaged on the wire and what headers are
needed is also automatically determined.

3.1 Key Questions

Realizing the ADN concept requires answering a few key
research questions.

Q1: What abstractions should our DSL provide to specify RPC
processing? The abstractions should be high-level, indepen-
dent of the underlying platforms, while being amenable to
efficient implementation. They should also 1) allow a range of
automatic optimizations such as re-ordering, offloading, and
generating minimal headers; and 2) enable reasoning about
internal state of elements because that is key for seamless
migration and scaling [31].

Specifying network processing using chained elements is
not new. A seminal system is Click [39] which enables build-
ing modular packet processing pipelines. Packet processing
can be specified as a directed graph of elements, where each
element is C++ code that can use any C++ data structure.
Because of these design choices, Click elements are hard to
offload and hard to migrate and scale up/down [31, 55].

We also want to enable developers to reuse code of ele-
ments developers by others, instead of having to implement
their own each time. Element reuse needs careful consider-
ation because there are no standard headers (like HTTP),
and an element that manipulates an RPC field of one ap-
plication may not necessarily work in another. Finally, we
should allow developers to specify message ordering and



-- Update Load Balancer internal state
CREATE VIEW Ib_update AS

SELECT flow_id, New_Dst() as dst_replica
FROM input LEFT JOIN lab_tab on flow_id
WHERE Ib_tab.flow_id is NULL

Ib_tab:
*

INSERT INTO Ib_tab SELECT * FROM Ib_update m
-- Select destination replica for RPCs 19 2
SELECT input.* [except dst_srv], Ib_tab.dst_replica 24 7
FROM input JOIN Ib_tab ON flow_id "
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Figure 3: An element that does sticky load balancing,.

reliability constraints and any element location constraints
(e.g., encryption element must be co-located with the sender
and not offloaded to a network switch).

Q2: How to translate the high-level specifications to efficient
distributed implementation across a range of hardware and
software platforms? This includes both the low-level code
(e.g., eBPF for kernel, P4 for programmable switches) and
packet header design for cross-device communication. When
multiple elements run on the same device, we should be
able to do cross-element optimizations. Finally, we need to
determine the minimum set of headers needed to satisfy the
network requirements.

Q3: How to determine the location(s) where network processing
happens across available resources and expand/collapse pro-
cessing based on workload, without disrupting applications?
When a new application is deployed, the ADN controller
needs to pick an initial configuration based on the speci-
fication and available resources. Once the application has
been running, it may need to reconfigure (e.g., picking a
configuration in Figure 2) according to the current workload.
When the workload increases, we may need to scale out the
RPC processing chains onto more compute devices. Such
reconfigurations should not disrupt the application.

3.2 DPotential Approach

We do not have definitive answers to the questions above; we
outline our preliminary thinking. Drawing inspiration from
stream processing systems like Dataflow SQL [17], we view
each RPC as a tuple with one or more fields. Elements process
an incoming stream of tuples and their processing logic is
specified in a SQL-like DSL, which is then compiled to native
device code. Each element can read or write internal states,
modeled as tables. The processing logic outputs zero or more
tuples whose fields may differ from those of the input tuples
(when an RPC is modified). Downstream elements in the
processing pipeline can read and edit these fields. Using a
SQL-like language enables the compiler to infer which fields
are read/written by each element, when it is safe to re-order
elements, and what information needs to be communicated
between elements (headers).

Figure 3 shows an example element that does sticky load
balancing. The element holds its state in the 1b_tab table
that stores a mapping from flow_id to dst_replica. It uses
this state to generate an output table based on the input table
which has a single row with incoming RPC. The element
first looks at the input to see whether there is an RPC row
for which flow_id is not in 1b_tab. If so, there is no sticky
requirement for that RPC and it calls the New_Dst () function
to randomly pick a destination replica and store the decision
in 1b_tab. The second part of the processing logic generates
an output table that contains the load balancing decision.
The element’s code is run upon every RPC arrival and new
outputs are sent downstream.

We can build on this basic language abstraction to provide
many of the capabilities we need.

Reusing elements. How can we reuse the code of our
load balancer above, which expects a field called flow_id,
to process application RPCs that may not have such a field?
We use the idea of SQL table views to enable such reuse.
Elements are seen as operating on table views, and when
importing them for use by an application, developers provide
a view definition query that maps input RPC table to the
element’s view. An application that wants to use its RPC’s
object_id field for load balancing can provide this query:
SELECT *, object_id AS flow_id FROM input. With
such reuse, most developers do not need to develop their
own element code. Specifying RPC processing will be similar
to chaining filters in service meshes today.

Supporting complex processing. SQL cannot (easily) ex-
press certain forms of complex processing that we need. One
such class is operations like compression and encryption.
We can model these as user-defined functions for which
developers provide platform-specific implementations. This
approach is similar to how Tensorflow [22] requires platform-
specific implementation of complex operators.

Another class of complex processing involves "shaping”
the RPC stream via mechanisms such as timeouts, retries,
and congestion control. We can special introduce elements
of type filters to express their operation. Simple filters will
be expressed in (extended) SQL, and complex ones will use
operators with platform-specific implementations. Depend-
ing on application needs, these operators may even wrap
around an existing protocol such as TCP.

Cross-element optimization. Since each element is repre-
sented in a SQL-like language, it is possible for cross-element
optimization leveraging SQL query rewriting and plan gener-
ation techniques. Other system-level optimizations are also
possible. When multiple elements all have states, they can
represent those states into an aggregated table state to facili-
tate efficient table lookup. Different elements can also work
on a single copy of the RPC in shared memory.



Computing performant ADN configurations. Depend-
ing on available resources in the application’s environment,
there are multiple ways to realize RPC processing (Figure 2).
To calculate the optimal runtime configuration, we first need
a way to compute the expected resource consumption for
different ADN configurations. One solution is to use a model-
based approach [67]. Using an offline profiling process, we
will first build a profile for each processing element on each
platform where it can run. An element’s profile includes its
performance and resource usage metrics. Based on these pro-
files, we can estimate end-to-end performance and resource
usage based on a compositional model. After that, we can
formulate a search space for the configuration and use an
optimization method to find optimal configurations.

Disruption-free reconfiguration. In response to workload
changes and failures, ADN elements will be migrated and
scaled up/down. The decoupling of code and state, and the
tabular nature of state, enables us to reconfigure the network
without disrupting applications. To migrate or scale out a
load balancer, we can copy over its state and start running a
new instance; while scaling down load balancer instances,
we can merge their states and kill some instances. Some
reconfigurations may require us to put the network in inter-
mediate states to prevent transient disruptions [35, 50, 57].
State decoupling also enables us to hot-update element pro-
cessing logic, using dynamic software updates [34].

4 Discussion

This section discusses a few questions relevant to ADNS.

Do ADNs require application source code modification?
Not necessarily. We can realize ADNs without source code
modification for a large class of applications by modifying
RPC libraries like gRPC. Applications send and receive RPC
messages via such libraries, and our modifications will pro-
cess and package messages according to the implementation
determined by the ADN controller. By linking against the
modified library, ADNs can be a drop-in replacement for
existing service meshes [20, 21].

How do ADN-based applications communicate exter-
nally? ADN focuses on building a network tailored to an
application but this application may need to communicate
with other applications and external clients. As with service
meshes, such communication can happen via designated
ingress and egress locations for an application. The ingress
locations translate incoming IP packets into the ADN format,
and the egress locations do the reverse translation.
Interesting opportunities arise when two ADN-based ap-
plications communicate. In that case, instead of translating
the sender ADN’s messages to a standard format and then
translating the standard format to the receiver ADN’s format,
we can directly translate information between the two ADNS.

Such "application peering" not only removes one translation
step, but also eliminates the need to "downshift" application
messages to IP and back.

Are there other domains where the ADN approach ap-
plies? There are other domains beyond microservices where
custom communication functionality is developed to support
multiple endpoints of the same application. These include
in-network computation applications [66] such as data an-
alytics [44, 61], and distributed ML training [42, 59]. These
contexts can also benefit from the ADN approach of auto-
generating a network implementation based on a high-level
specification. We do expect the specification language for
different contexts will be different to accommodate the needs
of each domain.

5 Related Work

Reducing the overhead of application networks. The
overhead of application-level networks (e.g., service meshes)
is widely recognized in the industry and there are ongoing
(not productized yet) efforts to lower them [6, 11]. All of these
efforts can lower the performance overheads of application-
level networks in certain conditions and they fall back to
sidecars (or userspace proxies) in the general case. They still
follow the same set of standardized network abstractions.
We propose a fundamentally different approach of removing
all the standardized network abstractions and thus expensive
layered protocol parsing is not needed.

Application-specific network customization. Clark and
Tennenhouse articulated the shortcomings of fixed network
layers over three decades ago and proposed Application Level
Framing (ALF) [26] for packets. Others too have made similar
observations and explored alternatives [25, 33, 40] where
headers and some network functionality are customized to
the applications. However, our perspective differs from ALF
and these proposals. They look at the network only as a
communication substrate between endpoints, while today’s
application networks have a huge emphasis on in-network
processing (e.g., load balancing, telemetry, access control). So,
ADN:Ss consider both the software on the endpoint and the in-
network processing. In addition, we argue for considering the
practical constraints of network hardware and drive network
implementations via high-level specifications.

High-level network programming. There is a rich line of
work on specifying aspects of network behavior in a higher-
level language and automatically generating low-level im-
plementations. Declarative Networking [48] uses Datalog
to express layer-3 control plane protocols such as OSPF;
NetKat [23] and similar languages [30, 36, 56] express end-
to-end packet forwarding based on layer 2-4 headers; and
Rubik [45] expresses middlebox processing of IP packets. We
draw inspiration from these works, but our target domain



is different—application-specific abstractions and message
processing, without relying on the existing layered model.

6 Conclusion

With ADN, developers specify the network functionality
desired by the application in a high-level language. A dis-
tributed implementation that is customized to the application
and deployment environment is then automatically gener-
ated. ADNs not only fit the application like a glove—they
have all the functionality that the application needs and
nothing more—but they can also leverage heterogeneous
hardware and scale with the workload.
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