
Dissecting Overheads of Service Mesh
Sidecars

Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,
Xuan Kelvin Zou, XiongChun Duan, Peng He, Arvind Krishnamurthy,

Matthew Lentz, Danyang Zhuo, Ratul Mahajan

1

From Monolith to Microservices

PaymentPayment

PaymentPayment

Payment Product

User Ad

Frontend

Payment Product

User Ad

Frontend

Monolithic Application Microservices

2

From Monolith to Microservices

PaymentPayment

PaymentPayment

Payment Product

User Ad

Frontend

Payment Product

User Ad

Frontend

3

Function calls RPCs

Microservices need rich message processing

Service
discovery

Load
balancing

Encryption

Access
control

Observability

Fault
tolerance

4

PaymentPayment

PaymentPaymentPayment Product

User Ad

Frontend

RPCs

Solution: Service Mesh with Sidecar Pattern

5

90% of the organizations either using or evaluating service mesh

- From a 2022 CNCF Survey¹

Sidecar

Container

Sidecar

Container

Service

Business Logic

Comm. Config
Security Logic

Retry Logic
Tracing…

Sidecar

Container

¹Service meshes are on the rise - CNCF ‘22

Performance Overhead vs. Functionality

● Balancing performance and functionality
○ What is the latency and CPU usage impact with a given configuration

6

"We are frequently asked how fast is Envoy? … The answer is: it
depends. Performance depends a great deal on which Envoy
features are being used and the environment in which Envoy is
run.…"

- From Envoy FAQ

● Evaluating the impact of optimizations
○ What are the primary sources of overhead of a given configuration?

○ What if I use an alternative the IPC mechanism between application and sidecars?

Ad-hoc Configuration Tuning is inefficient

● Black-box measurement of different configurations and

workloads

7

● Key limitation:

○ Combinatorial configuration space
■ Protocol

■ Envoy features

■ Workload (Request size and rate)

■ …

MeshInsight: Dissecting Sidecar Overheads

Goal: systematically quantify the service mesh sidecar

overheads for developers to

● Navigate the performance and functionality tradeoff

● Estimate the impact of their optimizations

8

Service Mesh Data Path

9

without sidecar

Message processing inside a sidecar

with sidecar

Modeling per-Sidecar Overheads
● Breakdown the overhead into fine-grained components

○ Independent from each other

○ Total overhead = Sum (overhead of each component)

10

● Metrics
○ Latency (service time)

○ CPU usage

Read

Sidecar Parsing/Filter/Baseline

Write
IPC

Building Component Profiles

● Component profile is a linear function of message

size and rate
○ Latency: Lx + message_size ⨉ lx

○ CPU: message_rate ⨉ (Cx + message_size ⨉ cx)

11

Predicting the End-to-end the Overhead

● Extended Call Graph (ECG)
○ Captures service communication patterns, platform specs, sidecar

configurations, and workload information

12

● E2E overhead = sum of all sidecar-level overheads in ECG

○ Latency overhead requires critical path analysis

MeshInsight Architecture

13

https://github.com/UWNetworksLab/meshinsight

https://github.com/UWNetworksLab/meshinsight

MeshInsight Architecture

14

https://github.com/UWNetworksLab/meshinsight

https://github.com/UWNetworksLab/meshinsight

Implementation
● Implementation:

○ Istio v1.13 and Envoy v1.21

○ Each component is profiled using an echo server

■ eBPF for latency

■ perf for CPU usage

15

Evaluation
● Synthetic benchmark

○ Hotel Reservation

● Real-world microservice traces

○ Alibaba microservice trace (~20K services, >20M call graphs)

16

Hotel Reservation Architecture

How Well Can MeshInsight Predict Overhead?
● MeshInsight provides accurate prediction of latency and CPU usage

overhead

17

Latency and CPU usage of Hotel Reservation Benchmark

How Much Overhead Do Sidecars add?

● gRPC mode can increase the latency by up to 2.7X and CPU usage by up

to 1.6X

● TCP mode overhead are lower but still noticeable

18

Latency and CPU usage of Hotel Reservation Benchmark

What Are the Primary Contributors of Latency Overhead?

19

TCP Mode (+41µs) HTTP Mode (+165µs)

Message size is set to 100B

● IPC, Read, and Write are the major sources of overhead in TCP mode

● Parsing dominates in HTTP mode

How Do Overheads Vary Across Configurations/workloads?

● Performance overhead varies by orders of magnitude for

○ Different configurations

20

CDF of Latency and CPU usage overhead for Alibaba Microservice Trace

Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis - SoCC’ 21

10X 10X

● Performance overhead varies by orders of magnitude for

○ Different configurations

○ Different call graphs

21
Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis - SoCC’ 21

50X

40X

Absolute Latency and CPU usage overhead for Alibaba Microservice Trace

How Do Overheads Vary Across Configurations/workloads?

● Different optimizations have different impacts
○ Zero-copy write offers negligible improvement

○ Unix Domain socket can provide notable benefits

What Are the Impacts of Common Linux Features?

22

-2.1%

-27%

Conclusion

23

● Present MeshInsight, a tool to systematically quantify overhead of

service mesh sidecars
○ Breaks down the data path into independent components

○ Predict the overhead based on extended call graphs

● Total Overhead and components' contribution varies substantially in

different settings

● Some optimizations can help reduce overhead others do not

● MeshInsight is available at: github.com/UWNetworksLab/meshinsight

https://github.com/UWNetworksLab/meshinsight

