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From Monolith to Microservices
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Function calls RPCs



Microservices need rich message processing
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Solution: Service Mesh with Sidecar Pattern
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90% of the organizations either using or evaluating service mesh

- From a 2022 CNCF Survey¹
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Performance Overhead vs. Functionality 

● Balancing performance and functionality
○ What is the latency and CPU usage impact with a given configuration
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"We are frequently asked how fast is Envoy? … The answer is: it 
depends. Performance depends a great deal on which Envoy 
features are being used and the environment in which Envoy is 
run.…"

- From Envoy FAQ 

● Evaluating the impact of optimizations
○ What are the primary sources of overhead of a given configuration?

○ What if I use an alternative the IPC mechanism between application and sidecars?



Ad-hoc Configuration Tuning is inefficient

● Black-box measurement of different configurations and 

workloads
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● Key limitation: 

○ Combinatorial configuration space
■ Protocol 

■ Envoy features

■ Workload (Request size and rate)

■ …



MeshInsight: Dissecting Sidecar Overheads

Goal: systematically quantify the service mesh sidecar 

overheads for developers to

● Navigate the performance and functionality tradeoff

● Estimate the impact of their optimizations

8



Service Mesh Data Path
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Modeling per-Sidecar Overheads
●  Breakdown the overhead into fine-grained components

○ Independent from each other

○ Total overhead = Sum (overhead of each component)
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● Metrics
○ Latency (service time) 

○ CPU usage 

Read

Sidecar Parsing/Filter/Baseline

Write
IPC



Building Component Profiles

● Component profile is a linear function of message 

size and rate
○ Latency: Lx + message_size ⨉ lx   

○ CPU: message_rate ⨉ (Cx + message_size ⨉ cx)
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Predicting the End-to-end the Overhead

● Extended Call Graph (ECG)
○ Captures service communication patterns, platform specs, sidecar 

configurations, and workload information
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● E2E overhead = sum of all sidecar-level overheads in ECG

○ Latency overhead requires critical path analysis



MeshInsight Architecture
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https://github.com/UWNetworksLab/meshinsight

https://github.com/UWNetworksLab/meshinsight


MeshInsight Architecture
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https://github.com/UWNetworksLab/meshinsight

https://github.com/UWNetworksLab/meshinsight


Implementation 
● Implementation: 

○ Istio v1.13 and Envoy v1.21

○ Each component is profiled using an echo server

■ eBPF for latency

■ perf for CPU usage
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Evaluation
● Synthetic benchmark

○ Hotel Reservation 

● Real-world microservice traces

○ Alibaba microservice trace (~20K services, >20M call graphs)
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Hotel Reservation Architecture



How Well Can MeshInsight Predict Overhead?
● MeshInsight provides accurate prediction of latency and CPU usage 

overhead 
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Latency and CPU usage of Hotel Reservation Benchmark



How Much Overhead Do Sidecars add?

● gRPC mode can increase the latency by up to 2.7X and CPU usage by up 

to 1.6X

● TCP mode overhead are lower but still noticeable 
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Latency and CPU usage of Hotel Reservation Benchmark



What Are the Primary Contributors of Latency Overhead?
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TCP Mode (+41µs) HTTP Mode (+165µs)

Message size is set to 100B

● IPC, Read, and Write are the major sources of overhead in TCP mode

● Parsing dominates in HTTP mode



How Do Overheads Vary Across Configurations/workloads?

● Performance overhead varies by orders of magnitude for 

○ Different configurations
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CDF of Latency and CPU usage overhead for Alibaba Microservice Trace

Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis  - SoCC’ 21
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● Performance overhead varies by orders of magnitude for 

○ Different configurations

○ Different call graphs
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Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis  - SoCC’ 21

50X

40X

Absolute Latency and CPU usage overhead for Alibaba Microservice Trace

How Do Overheads Vary Across Configurations/workloads?



● Different optimizations have different impacts
○ Zero-copy write offers negligible improvement

○ Unix Domain socket can provide notable benefits

What Are the Impacts of Common Linux Features?
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-2.1%

-27%



Conclusion
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● Present MeshInsight, a tool to systematically quantify overhead of 

service mesh sidecars
○ Breaks down the data path into independent components

○ Predict the overhead based on extended call graphs

● Total Overhead and components' contribution varies substantially in 

different settings

● Some optimizations can help reduce overhead others do not  

● MeshInsight is available at: github.com/UWNetworksLab/meshinsight

https://github.com/UWNetworksLab/meshinsight

